

Challenges of disease management on oilseed rape – phoma stem canker and light leaf spot

Prof Yongju Huang, University of Hertfordshire

OREGIN stakeholder Forum, JIC

19 Dec 2024

Two major diseases: phoma stem canker and light leaf spot

On pods **On leaves On stems**

Annual yield losses from these two diseases > £100 M in the UK (WWW.CropMonitor)

Phoma stem canker

Light leaf spot

1. Phoma stem canker

Caused by Leptosphaeria maculans (Lm) and L. biglobosa (Lb)

Both Lm and Lb can cause upper stem lesions and stem base cankers

Jacques et al., 2021, Plant Pathology; Huang et al., 2024, PMS

Life cycle of *L. maculans* (Lm) and *L. biglobosa* (Lb) Phoma stem canker is a monocyclic disease

Current control by using host resistance and fungicides

Lm: use of R gene resistance

- Complete resistance
- Easy to assess at seedling stage
- Race-specific
- Easily rendered ineffective

Major resistance gene (*Rlm*) confers complete resistance to isolates with the corresponding avirulent allele (*AvrLm*)

Efficacy of *RIm* genes depends on frequencies of *AvrLm* alleles in local populations

L. maculans genotype

R gene resistance prevents the growth of Lm in the leaf and from the leaf to the stem

Need to monitor pathogen population for effective use of *R* genes

Allele frequency (%)

Marcroft et al., 2012, Plant Pathology

Changes in frequencies (%) of avirulent alleles in *L. maculans* populations over four years

Changes in avirulent alleles over four years in the UK

Avirulent alleles

Currently, *Rlm7* is widely used to control phoma in the UK; there is a risk of breakdown of *Rlm7* resistance in the UK

Van de Wouw et al., 2024, Plant Pathology; Noel et al., 2022, Frontiers in Plant Science

Fungicides: changes in azole sensitivity in Lm

⊗ Bad news: significant shift towards decreased azole (DMI) sensitivity in modern Lm populations (red arrows)

Sensitivity shifts caused by inserts in the CYP51 promoter region (168 - 736 bp)

Inserts widespread in modern European Lm populations – 85% of isolates

```
King et al. (2024) Plant Pathology.
```

Severe phoma leaf spots were observed on 26 Nov 2024 despite the spray of fungicides

MAGIC2024/2025 field trials

at Rothamsted and JIC

fungicide (boscalid + pyraclostrobin) applied on 23rd Oct

Lb: currently little information on control of Lb by host resistance or fungicides

More Lb detected in stem cankers, from 30% in 2000 to 90% in 2013

Huang et al., 2024, PMS

Lb: currently little information on control of Lb by host resistance or fungicides

- Previously, only Lb 'brassicae' presented in the UK
- Recently, new Lb subclade (Lb 'canadensis', previous mainly in Canada and Australia) was first detected in the UK in 2022
- Lb were less sensitive to azole fungicides than Lm

Eckert et al., 2010, PMS; Huang et al., 2011, Plant Pathology

King & West (2022) Eur J Plant Pathology.

Challenge - control phoma stem canker

- Current effective resistance gene *Rlm7*
- L. maculans isolates virulent against Rlm7 detected
- Insensitivity to azole fungicides in Lm widely spread
- New Lb subclade was first detected in the UK
- Strategies to avoid breakdown of resistance
- Need to investigate new sources of resistance
- Effective control of phoma stem canker needs to target both Lm and Lb

2. Light leaf spot (LLS) Caused by Pyrenopeziza brassicae Light leaf spot is a polycyclic disease

Karandeni Dewage et al. (2018) Crop & Pasture Science.

Light leaf spot - symptomless period

Infection occurs in autumn, symptoms in crops are often not visible until spring

Interactions between *B. napus* and *P. brassicae* (different symptoms)

Boys et al. (2012) Plant Pathology; Karandeni Dewage et al. (2018) Crop and Pasture Science; Karandeni Dewage et al. (2021) Plant Pathology.

Host resistance is less understood

Black flecking - *R* gene resistance? Reduces/stops secondary infection

Variation in sporulation between cultivars - quantitative resistance (QR)?

Reduce secondary infection

Boys et al. (2012) Plant Pathology; Karandeni Dewage et al., 2021; Karandeni Dewage et al., 2022

Little information about host resistance

Boys et al. (2012) Plant Pathology 61, 543-554; Karandeni Dewage et al., 2022.

13 April 2023

Severe light leaf spot symptoms

OREGIN 2022/2023 field trial at Harlaxton

Severe light leaf spot symptoms10 April 2024

MAGIC 2023/2024 field trial at JIC

Currently no information on pathogen races

AHDB RL for 2024/2025, cultivar Dart, LLS resistance rating 7 as resistant, however it is susceptible in controlled conditions

Challenge - control light leaf spot

- LLS is a polycyclic disease
- Long symptomless period after initial infection
- Host resistance is less understood
- Lack of knowledge about variations in *P. brassicae* populations
- Development of fungicide-insensitivity was observed in *P. brassicae*
- Host resistance is ever more important

Acknowledgements

BBSRC IPA and LINK projects

Innovate UK

TSB, Agri-tech projects

OREGIN project

MAGIC field trials JIC: Carmel O'Neill, Steve Penfield, Rachel Wells, Teresa Penfield

Rothamsted: Mollie Langdon, Smita Kurup, Klaudia Sokolowska

Thank you for your attention

No the other